

Green Building Parameters & Case Studies

14th March, 2015 Mumbai Abdullah Nisar Siddiqui abdullah.nisar.siddiqui@undp.org

Presentation Coverage

- 1. Energy Scenario in the Country
- 2. Green / Energy Efiicient Buildings
- 3. Case Study 1 Large Commercial Building, Punjab
 - i. Fenestration Optimization
 - ii. Life Cycle Cost Analysis

Results & Calculations

- 4. Case Study 2 Multi-storey Office Tower
 - i. HVAC System selection
 - ii. Fenestration Optimization
 - iii. ASHRAE 90.1 appendix G savings
 - iv. Cooling loads for TES tank

Results & Calculations

5. Question and Answers

Introduction

- In 2020 almost 500 Million people will be living in Urban India
- Cities have a central role to play in the reduction of CO₂ emissions and the fight against climate change.
- Cities can mitigate climate change by reducing energy consumption in the construction, maintenance and refurbishment of buildings.
- Building sector contribution to overall electricity consumption has grown from 15% in 1970-71 to 34% in 2010-11 and therefore offer the largest cost-effective opportunity for savings.

Overview of Indian Building Sector

Source: CEA

Electricity Consumption comparison

Electricity Consumption Pattern in Residential Buildings Electricity Consumption Pattern in Commercial Buildings

Growth in the Indian Building Sector

Commercial Buildings Floor Area - Growth Forecast

- Currently, ~ 659 million m2 (USAID ECO-III Internal Estimate Using MOSPI, CEA and Benchmarked Energy Use data)
- In 2030,~ 1,900 million m2 (estimated)*
 - ➢ 66% building stock is yet to be constructed

Policy/ Regulatory Framework for Buildings

Design Standards NBC/ Municipal Building bye- laws	 Ensures Comfort Ensures Safety Attempts but doesn't ensure energy efficiency 	Linkage of NBC with ECBC
Energy Standard	• Energy Conservation Building Code	Harmonization of ECBC with NBC 2005 has been finalized by including a chapter "Approach to Sustainability" which would be adopted in all future constructions in the country.

Energy Conservation Building Code

- ECBC has been developed as a voluntary code for all new commercial building having a connected load of **100 kW** and above. ECBC provided minimum performance standards for following components :
 - Building Envelope (Walls, Roofs, Windows)
 - Lighting (Indoor and Outdoor)
 - Heating Ventilation and Air Conditioning (HVAC) System
 - Solar Hot Water Heating
 - Electrical Systems
- Voluntary introduction of ECBC in May 2007; mandatory after capacity building and implementation experience

Introduction to EE buildings

Buildings are designed for **PEOPLE**, and for specific **TASK**

- ✓ The building needs to keep people **comfortable, efficient, healthy**.
- Energy Efficient design seeks to create buildings that keep people comfortable while minimizing Energy Consumption.

- 1. Thermal comfort
- 2. Visual Comfort
- 3. Air Quality
- 4. Acoustic Comfort

Heat Transfer in Buildings

INTERNAL LOADS

Heat Transfer in Buildings

Conduction

Convection

Radiation

Building Envelope properties

U-Factor (U)

- Overall conductance of a building element.
- Used for layered building assemblies.
- expressed in terms of W/m2 K

Thermal Resistance (R-value = 1/U)

- A material's ability to resist heat flow.
- expressed in terms of m2 K/W

Building Envelope properties

Fenestration

Solar Heat Gain Coefficient (SHGC)

 measures how much of the incoming heat from sunlight gets transmitted into the building, versus how much is reflected away.

Visible Light Transmittance (VLT)

- Fraction of visible light that passes through a window or other glazing unit is called the Visible Light Transmittance (VLT).
- VLT does not measure shorter-wavelength light like UV or longer-wavelength light like infrared - only visible light.

Building Envelope properties -Fenestration

EE Design – Daylighting

WINDOW TO WALL RATIO (WWR)

EE Design – Daylighting

EE Design – Daylighting

You can't manage what you can't measure.

Energy Modeling Basics

Weather Data

Calculation Engine

- 1. Conductive, convective and radiative heat transfer calculation
- 2. Heat and Mass transfer Calculation
- 3. Thermal Inertia Calculation
- 4. Equipment Sizing Algorithms
- 5. Geometry, surface and Shading Algorithms

8760 Times

Building Envelop

Input

Building Envelope

- Wall / Internal Partitions (U Factor)
- Windows (U Factor, SHGC, Visible Transmittance)
- □ Roof (U Factor, Reflectance)
- Floor (U Factor)

Heating, Ventilating & Air-Conditioning

- Ventilation type (mechanical)
- Heating & Cooling (type, schedule, energy source)

Service Water Heating

Type, Operation schedule

Other Equipment

Equipment Power Density / Receptacle Loads

Activity Schedule

Schedule - hours, days (holidays)

Lighting

- □ Control (auto), Lighting energy (LPD)
- Operation schedule, Luminaries type, Radiant Fraction
- Task / display light (gain, operation schedule)

Software

- **DOE2** Free interface for detailed modeling available, well validated with research
- eQUEST- easy-to-use building energy analysis tool, provides professional level results in an affordable level of effort
- DesignBuilder comprehensive user interface to the EnergyPlus, dynamic thermal simulation engine, accurate environmental performance data.
- EnergyPlus Advanced modeling capabilities, modular programming structure, free software, no interface
- FCOTECT Reasonable 3D modeling interface, imports .dxf files, nice graphical results viewing, export to powerful simulation tools (Radiance, EnergyPlus), no real HVAC analysis
- HVACSIM+ Simulation model of a building HVAC system plus HVAC controls, the building shell, the heating/cooling plant and energy management & control system (EMCS) algorithms.
- **TRANSYS** Difficult interface, detailed modeling options

Case Study 1 – Large Commercial Building, Punjab

Scope:

- 1. What is the best glazing option available? And how far are they in terms of relative operational cost?
- 2. Why not to use an inexpensive glass and what will be the financial consequences of operation?
- 3. What percent operational efficiencies would we get if we use a better glass compare to a notional building façade?
- 4. What are the figure of relative saving in INR for all the ten façade options?
- 5. What is the total fraction of electricity bill for building with all the ten façade options?
- 6. What are the life cycle cost (LCC) for the different option compared with notional option?
- 7. What is the pay back with 3% to 4% energy inflation over the period of 25 year?

Case Study 1 – Large Commercial Building, Punjab

Options Evaluated:

- 1. SG-6LowE (INR1300/m2)
- 2. DG-6LowE-13Argon-6Clear (INR2500/m2)
- 3. TG-6LowE-13Argon-6Clear-6Air-6Clear (INR4000/m2)
- 4. QG-6LowE-13Argon-6Clear-6Air-6Clear-6Argon-6Clear (INR6000/m2)
- 5. DG-6Clear-13Air-6Clear (INR2000/m2)
- 6. SG-6Clear (INR600/m2)
- 7. DG-6LowE-13Air-6Clear (INR2800/m2)
- 8. DG-6LowE-20Air-6Clear (INR2200/m2)
- 9. DG-6LowE-6Argon-6Clear (INR3000/m2)
- 10. DG-6LowE-13Argon-6Clear-China-Blue Green (INR2100/m2)

Total Annual Fuel Usage with Standard Operation

Annual Saving kWh compared to Notional Building

Annual Saving INR compared to Notional Building

Life Cycle Cost Assessment of Glazing

Options

Year	Energy Price Escalation Rate for the years	Capital Cost/ Investment Year	SG-6LowE	DG-6LowE- 13Argon- 6Clear	TG-6LowE- 13Argon- 6Clear-6Air- 6Clear	QG-6LowE- 13Argon- 6Clear-6Air- 6Clear- 6Argon- 6Clear	DG-6Clear- 13Air- 6Clear	SG- 6Clear(Notio nal)	DG-6LowE- 13Air- 6Clear	DG-6LowE- 20Air- 6Clear	DG-6LowE- 6Argon- 6Clear	DG-6LowE- 13Argon- 6Clear-China- Blue Green
2008	%/100	Capital->	7020000	13500000	21600000	32400000	10800000	3240000	15120000	11880000	16200000	9396000
2009	0.04	1	-654893	-1460711	-1749738	-2010752	-700383	0	-1447165	-1460191	-1433614	-1460711
2010	0.04	2	-681089	-1519140	-1819727	-2091182	-728398	0	-1505052	-1518599	-1490959	-1519140
2011	0.04	3	-708332	-1579905	-1892516	-2174829	-757534	0	-1565254	-1579343	-1550597	-1579905
2012	0.04	4	-736666	-1643101	-1968217	-2261822	-787835	0	-1627864	-1642517	-1612621	-1643101
2013	0.04	5	-766132	-1708826	-2046946	-2352295	-819349	0	-1692979	-1708217	-1677126	-1708826
2014	0.04	6	-/96//8	-1///1/9	-2128823	-2446387	-852123	0	-1/60698	-17/6546	-1/44211	-1///1/9
2015	0.04	/	-828649	-1848266	-22139/6	-2544242	-886208	0	-1831126	-184/608	-18139/9	-1848266
2016	0.03	ŏ	-/9/691	-1//921/	-2131205	-2449192	-853100	0	-1/62/1/	-1//8583	-1/46211	-1//921/
2017	0.03	9	-021022	-1032593	-2195203	-2022000	-0/0093	0	-1010090	-1031941	-1/9009/	-1032593
2010	0.03	10	-040271	-100/0/1	-2201009	-2050340	-905054	0	-1070000	-1000039	-1002000	-100/0/1
2019	0.03	12	-0/1059	-1944190	-2320090	-20/0299	-932205	0	-1920100	-1943500	-1900132	-1944190
2020	0.03	12	-09/009	-2002524	-2390/5/	-2/0000/	-900172	0	-1903953	-2001011	-19053/0	-2002524
2021	0.03	14	-924745	-2002000	-24/0/20	-2039205	-9009/7	0	-2043472	-2001005	-2024337	-2002000
2022	0.03	15	981060	2124470	2621187	3012108	10/0205	0	2167010	2123721	21/7610	2124470
2023	0.03	16	-1010492	-2100212	-2699822	-3102563	-1049205	0	-2107913	-2253056	-2147013	-2100212
2025	0.03	17	-1040806	-2321474	-2780817	-3195640	-1113102	0	-2299946	-2320648	-2278409	-2321474
2026	0.03	18	-1072031	-2391118	-2864241	-3291510	-1146495	Ő	-2368944	-2390267	-2346761	-2391118
2027	0.03	19	-1104192	-2462852	-2950169	-3390255	-1180890	0	-2440012	-2461975	-2417164	-2462852
2028	0.03	20	-1137317	-2536737	-3038674	-3491963	-1216317	0	-2513213	-2535834	-2489679	-2536737
2029	0.03	21	-1171437	-2612840	-3129834	-3596721	-1252806	0	-2588609	-2611909	-2564370	-2612840
2030	0.03	22	-1206580	-2691225	-3223729	-3704623	-1290390	0	-2666267	-2690267	-2641301	-2691225
2031	0.03	23	-1242777	-2771961	-3320441	-3815762	-1329102	0	-2746255	-2770975	-2720540	-2771961
2032	0.03	24	-1280061	-2855120	-3420054	-3930235	-1368975	0	-2828643	-2854104	-2802156	-2855120
2033	0.03	25	-1318462	-2940774	-3522656	-4048142	-1410044	0	-2913502	-2939727	-2886221	-2940774
	LCC Savi	ng	-16,830,034	-39,696,479	-42,122,301	-40,827,963	-14,706,684	3,240,000	-37,583,158	-41,297,541	-36,009,648	-43,800,479
	Façade A	rea	5400	Sam								

Results and Conclusions

- 1. The highest operational saving is 387 MWh which is attributed to quadruple glazing. But the LCC analysis does not recommend this glazing due to its huge initial capital.
- 2. Considering building life of 25 yr. and an inflation in energy price till 2015 as 4% and after that a constant 3 % LCC has been evaluated. Which indicates that highest LCC come out to be of the poorest option that is clear single glazed units which is about (INR +3240,000)
- Similarly the LCC of china Blue green option whose U value is 1.24 W/m2.C, acceptable SHGC and VT, is coming out to be very less due to its low initial capital and high performance compared to other in this investment range.
- 4. Primary estimate depicts that using china glass for 25 yr would be saving about (INR -4.38 Cr.) where as other Double glazed façade options are showing a saving of (INR -1.4 to INR -3.0 Cr.)

Case Study 2 – Multistorey Office Tower

Scope:

- 1. HVAC System selection
 - a. FCU
 - b. Chilled beam
- 2. Fenestration Optimization
 - a. SHGC 0.30
 - b. SHGC 0.35
 - c. SHGC 0.40
- 3. ASHRAE 90.1 2007 App G savings
- 4. Cooling loads for TES tank

Scenario Summary

BaseCase

Fenestration: 40%

U-value: 3.69 W/m²K

- VLT: 0.70, SHGC: 0.25
- No shading elements
- Exterior Wall U-value: 0.479 W/m²K
- System 7: VAV Water Cooled
- LPD of 12 W/m2

ProposedCase

- Fenestration: as actual
- U-value: 1.8 W/m²K
- VLT: 0.50
- Shading elements
- Exterior Wall U-value: 0.4 W/m²K
- LPD of 9 W/m2

Water-type FCU + heat recovery Cooling: 7-12°C Heating: 80-60°C SHGC Iteration

Case #I 0.30

Case #2 0.35

Case #3 0.40

Chilled Beam + heat recovery Cooling: 15-18°C Heating: 35-45°C

SHGC Iteration

Case #4 0.30

Case #5 0.35

Case #6 0.40

Output Summary

Parameters	BaseCase of 90.1 Appendix G	Case #1	Case #2	Case #3	Case #4	Case #5	Case #6
Chiller COP	6,1	5,96	5,96	5,96	8,4	8,4	8,4
Chiller IPLV	6.3	8,98	8,98	8,98	11,88	11,88	11,88
Boiler Efficiency	82%	93%	93%	93%	93%	93%	93%
Window Wall Ratio	40% (ASHRAE)	As is in dwgs	As is in dwgs				
Exterior Shading	None	As is in dwgs	As is in dwgs				
U (glass + frame)	3,69	1,8	1,8	1,8 1,8		1,8	1,8
U (opaque walls)	0,479	0,4	0,4	0,4	0,4	0,4	0,4
Tvis	0,7	0,5	0,5	0,5	0,5	0,5	0,5
Int. Set Temps	W:22 S:24	W:22 S:24	W:22 S:24	W:22 S:24	W:22 S:24	W:22 S:24	W:22 S:24
	Nolloot	AHUs with	AHUs with				
Fresh Air	Recovery	heat recovery (eff:%75)	heat recovery (eff:%75)				
Population	1 person / 10 m2	1 person / 10 m2	1 person / 10 m2	1 person / 10 m2	1 person / 10 m2	1 person / 10 1 person / 10 m2 m2	
Lighting	12 W/m2 in office areas	9 W/m2 in office areas	9 W/m2	9 W/m2	n2 9 W/m2 9 W/m2		9 W/m2
SHGC	0.25	0,3	0,35	0,4	0,3	0,3 0,35	
HVAC System	VAV/Reaheat - Chilled and Hot water supply	FCU	FCU	FCU	Chilled Beam Chilled Beam		Chilled Beam
Saving over Appendix G	0.00%	21.90%	21.37%	20.77%	20.78%	20.10%	19.38%

Savings over ASHRAE Appendix G 90.1 2007

Savings over ASHRAE Appendix G 90.1 2007

Average Cooling Load (kW/m2 of Office Space)

Cooling Load Ratio in Annual Operation

References

- 1. AUTODESK, Sustainability Workshop
- 2. ASHRAE 55 Thermal Comfort 2004
- 3. Energy Conservation Building Code, ECBC 2007

Questions??

Abdullah Nisar Siddiqui

abdullah.nisar.siddiqui@undp.org

